A Geometric Relationship Between Equivalent Spreads
نویسنده
چکیده
By Andrè theory, it is well known how to algebraically convert a spread in a projective space to an equivalent spread (representing the same translation plane) in a projective space of different dimension and of different order (corresponding to a subfield of the kernel). The goal of this paper is to establish a geometric connection between any two such equivalent spreads by embedding them in a subspace and a subgeometry of an ambient projective space. The connection can be viewed as a generalization of a construction due to Hirschfeld and Thas.
منابع مشابه
Supermodularity and risk aversion
In this paper, we consider the relationship between supermodularity and risk aversion. We show that supermodularity of the certainty equivalent implies that the certainty equivalent of any random variable is less than its mean. We also derive conditions under which supermodularity of the certainty equivalent is equivalent to aversion to mean-preserving spreads in the sense of Rothschild and Sti...
متن کاملCosheaves and connectedness in formal topology (to appear in Annals of Pure and Applied Logic)
The localic definitions of cosheaves, connectedness and local connectedness are transferred from impredicative topos theory to predicative formal topology. A formal topology is locally connected (has base of connected opens) iff it has a cosheaf π0 together with certain additional structure and properties that constrain π0 to be the connected components cosheaf. In the inductively generated cas...
متن کاملBent functions and line ovals
In this paper we study those bent functions which are linear on elements of spreads, their connections with ovals and line ovals, and we give descriptions of their dual bent functions. In particular, we give a geometric characterization of Niho bent functions and of their duals, we give explicit formula for the dual bent function and present direct connections with ovals and line ovals. We also...
متن کاملThe Symmetries of Equivalent Lagrangian Systems and Constants of Motion
In this paper Mathematical structure of time-dependent Lagrangian systems and their symmetries are extended and the explicit relation between constants of motion and infinitesimal symmetries of time-dependent Lagrangian systems are considered. Starting point is time-independent Lagrangian systems ,then we extend mathematical concepts of these systems such as equivalent lagrangian systems to th...
متن کاملA geometric proof of the upper bound on the size of partial spreads in H(4n+1, q2)
We give a geometric proof of the upper bound of q2n+1 +1 on the size of partial spreads in the polar space H(4n+1, q2). This bound is tight and has already been proved in an algebraic way. Our alternative proof also yields a characterization of the partial spreads of maximum size in H(4n+ 1, q2).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Des. Codes Cryptography
دوره 30 شماره
صفحات -
تاریخ انتشار 2003